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This paper reports a numerical study of the laminar conjugate natural convection heat transfer with and
without the interaction of the surface radiation in a horizontal cylindrical annulus formed between an
inner heat generating solid circular cylinder and an outer isothermal circular boundary. Numerical solu-
tions are obtained by solving the governing equations with a pressure correction method on a collocated
(non-staggered) mesh. Steady-state results are presented for the flow and temperature distributions and
Nusselt numbers for the heat generation based Grashof number ranging from 107 to 1010, solid-to-fluid
thermal conductivity ratios of 1, 5, 10, 50 and 100, radius ratios of 0.226 and 0.452 and surface emissiv-
ities of 0–0.8 with air as the working medium. It is observed that surface radiation reduces the convective
heat transfer in the annulus compared to the pure natural convection case and enhances the overall
Nusselt number.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Though the amount of research done on natural convection in
annular cavities is considerable, relatively less number of publica-
tions, that take into consideration the contribution of surface radi-
ation, have appeared. Conjugate natural convection heat transfer in
the presence of surface radiation in annular cavities bounded by
co-axial, horizontal circular cylinders has not been investigated
widely in the past despite its technological applications such as
transportation and storage of spent nuclear fuel casks, under-
ground transmission cables, heat transfer in nuclear reactors, cool-
ing of electrical and electronic components, solar heat collection
using concentrators, heat removal from gas-cooled fast reactors,
design of high-temperature heat exchangers, etc. The presence of
surface radiation modifies the velocity and temperature fields in
the annulus and the magnitude of the convective coefficients.

A number of investigations have been reported on the natural
convection heat transfer in a horizontal cylindrical annulus. For in-
stance, Kuehn and Goldstein [1–3] have conducted both a finite
difference numerical simulation and an experimental study using
Mach–Zehnder interferometer to determine the influence of Ray-
leigh number, Prandtl number, diameter ratio on the temperature
distributions and the local equivalent conductivities on the inner
and outer cylinders. Kuehn and Goldstein [4] have also presented
a correlation for natural convection heat transfer between horizon-
ll rights reserved.
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tal circular cylinders. Grigull and Hauf [5] have measured the tem-
perature field in the gap between two horizontal isothermal
cylinders filled with air and local heat transfer coefficients on the
inner cylinder for nine diameter ratios using a Mach–Zehnder
interferometer. They have categorized the flow patterns into pseu-
do-conductive, transition and fully developed convection regimes.
Rotem [6] has studied the conjugate free convection in a horizontal
annulus using a series expansion technique. The inner solid cylin-
der carried either a line source along its axis or a distributed heat
source or both and the outer cylinder is maintained at a constant
temperature. Bubnovich and Kolesnikov [7], Kolesnikov and Bub-
novich [8] and Lacroix and Joyeux [9] have numerically studied
the conjugate problem of natural convection in horizontal annuli
to investigate the influence of the finite conductance of the cylin-
der walls.

The interaction of surface radiation and natural convection in
rectangular enclosures has received some attention in the litera-
ture. For instance, Balaji and Venkateshan [10] have numerically
investigated the interaction of surface radiation and natural con-
vection in a square cavity. The combined convection and radiation
problem has been studied by Balaji and Venkateshan [11] for an
open cavity with air as the intervening medium for the Rayleigh
number range 104—108. It is found that the radiation has a dual ef-
fect of contributing to the overall heat transfer as well as decreas-
ing the convective component. Correlations based on the
numerical results were presented for both convection and radia-
tion. The experimental work of Ramesh and Merzkirch [12] on
combined natural convection and radiation in an open cavity

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.05.033
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Nomenclature

c specific heat capacity (J kg�1 K�1)
Cc correlation coefficient ð¼ 1� ems=r2Þ
ems mean square error
F radiation configuration factor
g acceleration due to gravity (m s�2)
G irradiation (W m�2)
Gr heat generation based Grashof number ½¼ ðgbDTR3

oÞ=
m2

f ; DT ¼ _QvR2
o=kf �

i; j grid point indices
J radiosity (W m�2)
Nupnc;av;ib average convective Nusselt number for the inner bound-

ary (pure convection)
Nuc;av;ib average convective Nusselt number for the inner bound-

ary (with radiative effect)
Nur;av;ib average radiative Nusselt number for the inner bound-

ary
Nut total Nusselt number
P perimeter (m)
Pr Prandtl number
Prc radiation–conduction parameter
_q heat flux (W m�2)
_Qv volumetric heat generation (W m�3)
Ri; Ro radii of the inner and outer cylinders, respectively (m)
Roh overheat ratio
Ra Rayleigh number ð¼ Gr � PrÞ
t time (s)
T temperature (K)
vr;vh velocities in the radial and tangential directions (m s�1)

Greek symbols
a heat transfer coefficient (W m�2 K�1)

b volumetric expansion coefficient (K�1)
dk;j Kronecker delta
� emissivity
g dynamic viscosity (Pa s)
h angular coordinate (rad)
j radius ratio ðRi=RoÞ
k thermal conductivity (W m�1 K�1)
m kinematic viscosity (m2 s�1)
n distance along cylinder surface (m)
q density (kg m�3)
r Stefan–Boltzmann constant (W m�2 K�4)
w stream function ½¼

R
ðrvrdh� vhdrÞ� ðm2 s�1Þ

Subscripts
av average
c convective
eq equivalent
f, s fluid and solid, respectively
ib, ob inner and outer boundaries, respectively
j, k subsurfaces
l local
max maximum
p constant pressure
pnc pure natural convection
r radiative
ref reference
t total (i.e., convective plus radiative)

Superscript
� dimensionless quantity
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geometry with an active isothermal longer vertical wall, insulated
shorter opposing wall and an insulated horizontal bottom wall
indicates that the radiation contribution increases from about 5%
to 50% when the wall emissivity increases from 0.05 to 0.85. The
numerical analysis for this problem was performed by Singh and
Venkateshan [13]. Anil et al. [14] studied the conjugate turbulent
natural convection and surface radiation in rectangular enclosures
and investigated the effect of Rayleigh number, aspect ratio, wall
emissivity and the external heat transfer coefficient on the heat
transfer.

Literature on natural convection in circular geometries in the
presence of radiation is very limited. Perlmutter and Howell [15]
have obtained solutions for the radiation heat transfer and emis-
sive power distribution between infinitely long concentric gray
cylinders at different wall temperatures and emissivities enclosing
a gray non-isothermal gas with a uniformly distributed heat source
using Monte Carlo method. Onyegegbu [16] has studied analyti-
cally the heat transfer in an absorbing and emitting non-gray
Boussinésq fluid within the annular gap of two infinitely long iso-
thermal horizontal concentric cylinders using the Milne–Edding-
ton approximation.

The objective of the present work is to numerically investigate
the coupled conduction, natural convection and surface radiation
inside a horizontal annulus. The annulus is formed by an inner heat
generating solid circular cylinder and an isothermal concentric
outer boundary. Such problems arise in several applications. For in-
stance, spent nuclear fuel casks contain one or more canisters of
circular cross-section in which bundles of spent fuel rods are
packed. The canister can often be modelled as a heat generating so-
lid with an equivalent thermal conductivity. Due to close spacings,
the mode of heat transmission through the fill gas is often conduc-
tion. Methods of calculating equivalent thermal conductivity of
such arrays of tubes or rods have been presented by Manteufel
and Todreas [17].

2. Mathematical formulation

2.1. The physical model and the coordinate system

The physical model comprises a heat generating inner solid cir-
cular cylinder EFGHE of radius Ri enclosed by an outer concentric
circular boundary ABCDA of radius Ro, as shown in Fig. 1.

The problem is described in plane cylindrical coordinates with
the gravity vector acting vertically downwards. êr and êh are the
unit vectors along r- and h-directions, respectively. The angle h is
measured from OB in the counter-clockwise direction. The annulus
is assumed to be sufficiently long so that the flow and temperature
fields can be taken as invariant along the z-direction, neglecting
the end effects.

At times less than or equal to zero, the fluid inside the annulus
is quiescent with uniform temperature at Tref . For times greater
than zero, the inner solid square begins to generate heat with a vol-
umetric heat generation rate of _Qv, which is transferred to the
fluid, whereas the outer cylinder is isothermally cooled with the
temperature maintained at To ¼ Tref .

2.2. Governing equations

The flow and temperature distributions are assumed to be two-
dimensional and are governed by continuity, Navier–Stokes, fluid
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Fig. 1. The physical model and coordinate system for the annulus.
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and solid energy equations and the surface radiative heat transfer
coupling at the inner and outer boundaries. The viscous dissipation
and compressibility effects are considered to be negligible. The ef-
fect of density variation causing the buoyancy force is taken into
account through the Oberbeck–Boussinésq approximation. Other
thermophysical properties of the fluid and those of the solid are as-
sumed to be independent of temperature. The inner surface of the
outer cylinder and the surface of the inner cylinder are assumed to
be diffuse and gray, i.e., the emissivity and absorptivity are inde-
pendent of wavelength. The governing equations in dimensionless
form read:

Continuity equation:

@ðr�v�r Þ
@r�
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where S�vr and S�vh are the source terms in the r-momentum and
h-momentum equations, respectively.

Energy equation for the fluid:
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Energy equation for the solid:

q�sc�s
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where k�s is the solid-to-fluid thermal conductivity ratio.

The system of non-dimensionalisation is:

r� ¼ r
Ro
; v�r ¼

vrRo

mf
; v�h ¼

vhRo

mf
; t� ¼ tmf

R2
o

; q�s ¼
qs

qf
;

c�s ¼
cs

cp;f
; k�s ¼

ks

kf
; Gr ¼ gbDTR3

o

m2
f

; T� ¼ ðT � TrefÞ
DT

;

DT ¼
_Q vR2

o

kf
; Pr ¼ gf cp;f

kf
ð8Þ
2.3. Relations for surface radiation heat exchange

Since natural convection and radiation are being simulta-
neously computed, the inner and outer surface segments formed
by the computational mesh are taken as the subsurfaces for the
calculation of radiative heat exchange. The radiative heat flux _qr;k

leaving a subsurface k in an enclosure is related to the irradiation
Gk of the subsurface (i.e., the total heat flux falling on the subsur-
face) and the radiosity Jk (i.e., the sum of the heat flux emitted
and reflected from a subsurface), through the relation:

_qr;k ¼ Jk � Gk ¼
�k

1� �k
ð _Eb;k � JkÞ ð9Þ

where _Eb;k ¼ rT4
k is the black body emissive power, Tk is the abso-

lute temperature and �k is the emissivity of the kth subsurface.
The irradiation is given by:

Gk ¼
1
Ak

XN

j¼1

JjAjFj;k ð10Þ

where Fj;k is the radiation configuration factor between subsurfaces
j and k, determined by Hottel’s crossed string method [18,19]. Each
of the subscripts k and j varies from 1 to N, (N = total number of
subsurfaces in the enclosure) and Aj and Ak are the areas of the
respective subsurfaces. The method of calculating the radiation
configuration factors is presented in Section 2.6.

Using Eq. (10) in Eq. (9), the following relation is obtained for
the kth surface:

XN

j¼1

dk;j

ð1� �jÞ
� Fj;k

� �
AjJj ¼

�k

1� �k
AkrT4

k ð11Þ

where dk;j is the Kronecker delta and r is the Stefan–Boltzmann
constant.

The above equation in dimensionless form reads:

XN

j¼1

dk;j

ð1� �jÞ
� Fj;k

� �
A�j J�j ¼

�k

1� �k
A�kPrc

ð1þ T�kRohÞ4

Roh
ð12Þ

where Roh ¼ DTc=Tc is the overheat ratio and Prc ¼ rT3
c Ro=kc is the

radiation–conduction parameter. The dimensionless radiosity is de-
fined as J�k ¼ ðJkRoÞ=ðkfDTcÞ.

By writing Eq. (12) for all the subsurfaces, a set of simultaneous
equations is obtained, which in matrix notation is expressed as:



Fig. 2. Radiation configuration factors between inner-to-outer boundary
subsurfaces.
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½C�½J�� ¼ ½B�; i:e:; ½J�� ¼ ½C��1½B� ð13Þ

The general elements in the above coefficient matrix and the
forcing vector can be obtained by correspondence with Eq. (12).

The solution of the simultaneous equations yields the radiosity
values for all the subsurfaces. The net dimensionless radiation flux
leaving the subsurface k is given by:

_q�r;k ¼
�k

1� �k
Prc
ð1þ T�kRohÞ4

Roh
� J�k

" #
ð14Þ

To take into account the coupling between natural convection
and surface radiation, a correspondence is established between
the grid and subsurface numbering schemes. It is assumed that
the subsurface has a uniform flux over its extent, equal to the local
net radiation flux at the grid point contained in it.

The parameters of the problem are the heat generation based
Grashof number ðGrÞ, solid-to-fluid thermal conductivity ratio
ðk�sÞ, radius ratio ðjÞ, Prandtl number ðPrÞ, emissivity of the inner
and the outer boundaries ð�Þ, radiation–conduction parameter
ðPrcÞ and the overheat ratio ðRohÞ. Thus the dimensionless temper-
atures of interest and the average Nusselt number will be functions
of these parameters. For instance, Nu ¼ FðGr; k�s ;j; Pr; �;Roh; PrcÞ.

2.4. Initial and boundary conditions

The initial conditions at t� ¼ 0 correspond to a quiescent state
with uniform temperature. At t� > 0, no-slip hydrodynamic condi-
tion exists on the inner and outer boundaries of the annulus. The
thermal boundary conditions at the solid–fluid interface are the
heat flux continuity and no temperature jump. The heat flux conti-
nuity includes the radiation heat flux _q�r;k leaving the inner surface
in the fluid region, which can be written as:

�k�s
@T�s
@n�s
¼ � @T�f

@n�f
þ _q�r;k; T�s ¼ T�f ð15Þ

where n�s is the dimensionless normal distance measured in the so-
lid towards the interface and n�f is the dimensionless normal dis-
tance measured in the fluid from the interface.

2.5. Nusselt numbers

The local, inner boundary, convective Nusselt number Nul;ib;c,
with respect to the temperature difference ðTav;ib � ToÞ is:

Nul;ib;c �
al;ib;cRo

kf
¼ � 1

T�av;ib

@T�f
@n�f

� �
l;ib;c

¼
_q�l;ib;c
T�av;ib

ð16Þ

where _q�, the dimensionless heat flux, is ð _qRoÞ=ðkfDTcÞ.
Similarly, the local, inner boundary, radiative Nusselt number

Nul;ib;r is:

Nul;ib;r �
al;ib;rRo

kf
¼

_q�l;ib;r
T�av;ib

ð17Þ

The average convective Nusselt number Nuc;av;ib (in the presence of
radiation effects) and the average radiative Nusselt number Nur;av;ib

on the inner boundary are given by:

Nuc;av;ib ¼
1

P�ib

Z
ib

Nu l;ib;c dn�ib; Nur;av;ib ¼
1

P�ib

Z
ib

Nul;ib;r dn�ib ð18Þ

where P�ib and T�av;ib are the dimensionless perimeter and the dimen-
sionless average temperature on the inner boundary.

The Nusselt numbers on the outer boundary are defined in a
similar manner. Both P�ib and P�ob are measured from the bottom-
most point of the respective boundaries in a counter-clockwise
direction.
The total Nusselt number, Nut on the inner boundary is the sum
of convective Nusselt number with the influence of radiation and
the radiative Nusselt number.

Nut ¼ Nuc;av;ib þ Nur;av;ib ð19Þ
2.6. Calculation of configuration factors

To find the configuration factor between the segment AD on the
inner surface and the segment BC on the outer surface by Hottel’s
crossed string method, strings are imagined to be stretched among
each pair in the set of points A, B, C and D, which are consecutively
designated in a counter-clockwise direction. AD can view the arc
PS (counter-clockwise) of the outer circle. The configuration factor
between AD and any subsurface on the rest of the outer circumfer-
ence is zero. In Fig. 2, point B or C is shown. Ox is the initial line
from which the angle made by any radius vector is measured coun-
ter-clockwise. With respect to B, C will be ahead on the outer sur-
face in a counter-clockwise direction; with respect to C, B will be
behind. AB and CD are the straight strings, and AC and BD are
the crossed strings. The semi-tangents at A are AP and AR, and
the semi-tangents at D are DQ and DS. If point B lies between P
and Q, the crossed string BD consists of a straight portion BE

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�2o � R�2i

q� �
and a wrap ED around the inner circle. The angle

subtended by BE at the center is cos�1ðR�i =R�oÞ. The wrap is given
by R�i ðhD � hEÞ, where hE ¼ hB � cos�1ðR�i =R�oÞ. The variation of the
difference between any two angles is limited to the range 0—2p.
This requires the addition or subtraction of 2p where the original
difference is less than zero or greater than 2p. If point C lies be-
tween P and Q, the straight string CD consists of a straight portion
CE and a wrap ED around the inner circle. Similarly depending on B
or C lying between R and S, the straight string AB or the crossed
string CA will have a wrap. If B or C lies between Q and R, the cor-
responding strings will not have any wrap around the inner sur-
face. If P or S lies inside the outer subsurface BC, the fact that the
arc AD can see only the portion PC or BS should be taken into ac-
count while determining the radiation configuration factor
FAD—BC. Since reciprocity is not valid for such part-view surfaces,
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all the configuration factors are individually calculated without
making use of the reciprocity rule. With the lengths of the strings
determined, the quantity LAD � FAD—BC is given by half the difference
between the sum of the crossed strings and the sum of the straight
strings, where LAD is the arc length AD.

Fig. 3 shows the method of calculating the configuration factor
between the outer subsurface AB and a subsurface CD, with A, B, C
and D consecutively designated in a counter-clockwise direction.
The configuration factor is outer-to-inner or outer-to-outer accord-
ing as CD is the inner or outer element. AB can see the portion PS
(counter-clockwise) on the inner circle and the portion EH (coun-
ter-clockwise) on the outer circle. If CD is an inner subsurface,
the wrap that occurs to a straight or crossed string when C or D lies
between P and Q or R and S, is to be taken into account. If CD is an
outer subsurface, a straight or crossed string can have two straight
portions and a wrap when C or D lies between E and F or G and H.
Other considerations are similar to the method of finding inner-to-
outer configuration factor.
3. Numerical formulation

3.1. Pressure–velocity coupling

The governing equations are solved in primitive form on a col-
located mesh. Among the algorithms for incompressible flow prim-
itive variable formulations, the SIMPLE (Semi-Implicit Method for
Pressure-Linked Equations) algorithm has been employed fre-
quently along with a staggered grid. However, for complex geom-
etries, non-uniform meshes and three-dimensional cases, the use
of a staggered mesh increases the storage requirements, program-
ming effort and the computation time [20]. In the present work,
SIMPLE procedure is implemented on collocated grids, where the
velocities and other scalars are defined at the same node. This
method employs the same control volume for pressure, velocity
and temperature and the discretized equations are similar for all
variables. This solution methodology saves computer time and
may provide faster convergence for some problems. Direct applica-
tion of the SIMPLE algorithm to collocated meshes can result in
checkerboard splitting of the pressure field, because the face veloc-
Fig. 3. Radiation configuration factors between outer-to-inner and outer-to-outer
boundary subsurfaces.
ities are expressed in terms of the pressure difference between two
alternating, rather than consecutive nodes. The present problem is
solved using the algorithms suggested by Perić et al. [20], Armfield
[21] and Date [22,23], respectively, and the maximum dimension-
less temperatures and the Nusselt numbers are compared.
3.2. Discretization

The convective terms in the governing equations are discretized
by the donor-cell method (Torrance and Rockett [24] and Vafai and
Ettefagh [25]) and the diffusive terms by the central differences
using second-order accurate analogues. The heat flux continuity
condition is discretized using two-point one-sided differences.
The local fluid temperature gradients are evaluated with third-or-
der accurate finite difference representations on the inner and out-
er boundaries. In order to resolve the center point singularity, the
solid energy equation in cartesian form is discretized at the center
of the inner solid circle with the first grid circle radius as the mesh
spacing. Choosing the number of the angular spacings as a multiple
of four, such discretized equations are written for all the required
mutually perpendicular orientations of the radial lines and are
summed up. The relation for the center temperature is obtained
from the summed up discretized equations.
3.3. Solution procedure

Steady-state results are obtained as the long-time solutions to
time-dependent equations using finite difference techniques. A
segregated solution approach is adopted, which, for each global
iteration, consists in succession, the solution of the radial and
tangential direction momentum equations, pressure correction
equation and the energy equations with velocity and pressure
corrections carried out before the solution of the energy equations.
For each iteration of an equation, the solution is obtained by a
h-direction sweep with the application of the tri-diagonal matrix
algorithm for the grid points on each radial line.

For determining the radiosity values, the inverse matrix ½C��1 in
Eq. (13) is computed only once by the Gauss–Jordan method with
partial pivoting and stored. Subsequently, the radiosity values are
obtained by multiplying the forcing vector with the inverse matrix.

Sufficient number of global iterations on the set of equations are
performed over each time step for better coupling of the velocity
and temperature fields. The time step is chosen as a multiple (typ-
ically 50) of that obtained from the combined Courant–Friedrichs–
Lewy and diffusion number restrictions applicable to explicit
methods (Roache [26]). A relative convergence criterion of
5� 10�5 on the maximum dimensionless temperature is chosen
for the global iteration process at each time step. The criterion
for the attainment of steady state is that the relative difference
of the maximum temperature in the domain over a large number
of time steps (50–100) should be less than 5� 10�5. The energy
balances on the inner and outer boundaries with respect to the to-
tal heat generation are used as additional checks for the attainment
of steady state. The integral energy balance can be written as:

_Q�z ¼
Z

ib
� @T�

@r�

� �
l;ib
þ _q�l;ib;r

" #
dn�ib ¼

Z
ob
� @T�

@r�

� �
l;ob
� _q�l;ob;r

" #
dn�ob

ð20Þ

where _Q �z ¼ _Q z=ðkfDTcÞ, the dimensionless heat generation per unit
length in the inner solid cylinder, is pR�2i .

The heat transfer rates across the inner and outer boundaries
are obtained by integration of the local fluid temperature gradient
around the respective peripheries. The numerical quadrature is
performed using the high-accuracy scheme of Gill and Miller
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[27]. To obtain faster convergence to steady state, the quantity q�sc�s
is set equal to unity.

A computer program is developed and run on the ALPHA work
stations at the Supercomputer Education and Research Center, In-
dian Institute of Science, Bangalore, India. All the calculations are
performed with the double-precision arithmetic, for which the
word length is 32 bits.

3.4. Validation of the computer program

The collocated mesh method is first validated with the bench-
mark results of de Vahl Davis [28] and Hortmann et al. [29], re-
ported for the buoyancy-driven flow in a differentially heated
cavity with top and bottom sides insulated, as shown in Table 1.
Secondly, the steady-state results of the natural convection in the
horizontal annulus are compared with those obtained from vortic-
ity–stream function approach. The results agree well with each
other with a maximum difference of about 6% in the dimensionless
maximum temperature and average Nusselt number on the inner
boundary.

3.5. Grid sensitivity tests

To see the effect of mesh size on the conjugate results, compu-
tations are carried out with five different meshes with the number
of mesh spacings varying from 60 to 100 in each direction. An
81 � 80 mesh is finally chosen with equal number of mesh spac-
ings in the radial and angular directions. This grid contains 33
and 41 grid points in the solid region for j ¼ 0:226 and 0.452,
respectively. To ensure grid compatibility, the same subsurfaces
on the inner and outer boundaries are used for radiative heat ex-
change calculations.

4. Results and discussion

As the first part of the investigation, steady-state results for the
conjugate problem with pure natural convection are computed
with the algorithms formulated by Perić et al. [20], Armfield [21]
and Date [22,23] for Grashof number, Gr ¼ 108, solid-to-fluid ther-
mal conductivity ratio ðk�sÞ of 10 and 50 and the radius ratios ðjÞ of
0.226 and 0.452 and the results are presented in Table 2. The j
values considered are 0.226 and 0.452, which correspond to inner
circles equal in area to squares of sides 0.4 and 0.8, respectively. It
could be seen that there is only a negligible variation in the pure
convection quantities like average Nusselt Number on the inner
boundary ðNupnc;av;ibÞ, average Nusselt Number on the outer boundary
ðNupnc;av;obÞ, average dimensionless inner boundary temperature
ðT�pnc;av;ibÞ and maximum dimensionless temperature ðT�pnc;maxÞwhen
different algorithms are employed. Hence, most of the results are
obtained with the algorithm of Perić et al. [20].

Secondly, steady-state results for the conjugate problem with
pure natural convection and for the combined case (taking radia-
tion effects) are computed for Gr range 107–1010, k�s of 1, 5, 10,
50 and 100, and j of 0.226 and 0.452 using the algorithm formu-
lated by Perić et al. [20].

Choosing Ro ¼ 0:25 m and the cold reference temperature as
Tref ¼ 300 K, for air as the working fluid, both the Grashof number
Table 1
Comparison of the present results with the benchmark results for the average Nusselt
number on the vertical walls of the enclosure.

Ra de Vahl Davis [28] Hortmann et al. [29] Present

105 4.519 4.525 4.513

106 8.800 8.851 8.829
ðGrÞ and the overheat ratio ðRohÞ become functions of volumetric
heat generation rate, _Qv. Hence, by varying _Qv, both Gr and
Roh change. For instance, when _Q v varies from 2.3 W m�3 to
2300 W m�3, Gr varies between 107 and 1010 and Roh varies from
0.0178 to 17.87. The chosen value of Ro, namely, 0.25 m, finds
application in test or pilot reactor spent nuclear fuel casks. The
radiation–conduction parameter Prc is kept constant at 14.89. The
heat generation and outer radius based Grashof number Gr is gen-
erally two to three orders of magnitude higher than Grashof num-
ber GrT, based on the difference between the average inner
boundary and the outer boundary temperatures, and hence the
flow is found to remain laminar even for Gr values as high as
1010. The quantity GrT is defined as ½gbðTav;ib � Tref ÞR3

o�=m2
f . Since

the computations cover a wide parametric space, selected results
are presented.
4.1. Isotherms and streamlines

The isotherm (right half) and streamline (left half) maps for
k�s ¼ 10; j ¼ 0:226 and for Gr ranging from 107 to 1010 for pure
natural convection (a–d) and for combined convection and radia-
tion (e–h) are shown in Fig. 4 (The stream function w is defined
in the nomenclature). The isotherm and streamline maps for the
same parameters but for j ¼ 0:452 are shown in Fig. 5. It can be
seen that the isotherms and streamlines are symmetric about the
vertical center line for pure convection case as well as with the
interaction of radiation.

Figs. 4 and 5 show that the strength of the circulation increases
with Grashof number and the center of rotation moves further up
for both pure convection and for combined transfer modes. An
examination of the isotherms reveals that a temperature inversion
exists in part of the region between the two boundary layers with
the fluid near the cold outer surface being warmer than that closer
to the hot inner surface. The fluid at the lower portion of the annu-
lus is practically stagnant. At Gr ¼ 109, the recirculation regions lie
closer to the upper part of the outer boundary. The flow in the cir-
cular annulus is found to be always bicellular for the parametric
range considered.

While comparing the pure convection and combined transport
cases, it can be noticed that the isotherms in the solid are less
dense for pure convection case as compared to those with radia-
tion. This can be traced to the homogenization of the temperature
in the fluid due to the effect of radiation. Less refraction is observed
in the isotherms at the solid–fluid interface for the combined
transfer cases at all Grashof numbers.

The variations in the isotherm and streamline patterns with
Grashof number in the fluid region are found to be similar for other
thermal conductivity ratios. At lower thermal conductivity ratio,
the isotherms in the solid become denser compared to those in
the fluid region at higher Grashof numbers. However, at higher
thermal conductivity ratio, temperature homogenization occurs
even at lower Grashof numbers. For all values Gr, a refraction is ob-
served in the isotherms at the solid–fluid interface which is in
accordance with the heat flux continuity condition.
4.2. Variation of vertical velocity profiles along the horizontal
mid-plane

Fig. 6a and b shows the vertical velocity profiles at mid-height
(i.e., the variation of v�h at h ¼ 0 with respect to r�) for k�s ¼ 10;
j ¼ 0:226 for Gr ¼ 108 and Gr ¼ 109, respectively, for � ¼ 0:4 and
� ¼ 0:0 (pure convection). It can be observed that radiation not
only reduces the peak velocities but also modifies the velocity profile
in the core of the annulus. This can be traced to the fact that,
compared to pure natural convection case, the radiation reduces



Table 2
Comparison of the steady-state results obtained using three algorithms in the horizontal annulus for Gr ¼ 108 and k�s ¼ 10 and 50.

k�s j Algorithm T�pnc;max T�pnc;av;ib Nupnc;av;ib Nupnc;av;ob

10 0.226 P 0.00936 0.00802 14.06 3.24
A 0.00933 0.00799 14.11 3.19
D 0.00934 0.00800 14.08 3.21

10 0.452 P 0.02337 0.0180 12.53 5.81
A 0.02321 0.0178 12.61 5.52
D 0.02331 0.0179 12.56 5.66

50 0.226 P 0.00840 0.00812 13.89 3.19
A 0.00831 0.00804 13.88 3.16
D 0.00839 0.00811 13.89 3.18

50 0.452 P 0.0196 0.0184 12.25 5.66
A 0.0195 0.0183 12.30 5.47
D 0.0195 0.0183 12.27 5.58

P, Perić et al. [20]; A, Armfield [21]; D, Date [22,23].
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Fig. 4. Isotherm (right half) and streamline (left half) maps for k�s ¼ 10; j ¼ 0:226
and Gr values 107 (a and e), 108 (b and f), 109 (c and g) and 1010 (d and h) for pure
convection (a–d) and convection with radiation effects (e–h).
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ig. 5. Isotherm (right half) and streamline (left half) maps for k�s ¼ 10; j ¼ 0:452
nd Gr values 107 (a and e), 108 (b and f), 109 (c and g) and 1010 (d and h) for pure
onvection (a–d) and convection with radiation effects (e–h).
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the temperatures while also tending to even out the temperature
distribution in the fluid.
4.3. Variation of average Nusselt number with Grashof number

The convective Nusselt number ðNuc;av;ibÞ, radiative Nusselt num-
ber ðNur;av;ibÞ and maximum dimensionless temperature ðT�maxÞ ob-
tained with the interaction of radiation with surface emissivities of
the inner and outer boundaries taken as � ¼ 0:6 are compared with
the pure natural convective values (Nupnc;av;ib and T�pnc;max) for Gr
ranging from 107 to 1010; j ¼ 0:226 and 0.452 and k�s of 5 and 10
in Tables 3 and 4. It is noticed that the maximum temperatures at-
tained are lower for cases with the radiation effects than for pure
convection cases because of the increased radiative Nusselt numbers
due to radiation. Also, the average convective Nusselt numbers on
the inner boundary reduces compared to the pure natural convec-
Table 3
Comparison of the convective and radiative Nusselt numbers in the horizontal annulus fo

k�s j Gr T�pnc;max Nupnc;av;ib

5 0.226 107 0.0150 9.18

108 0.0106 14.17

109 0.0076 22.14

1010 0.0061 31.66

5 0.452 107 0.0392 7.93

108 0.0282 12.66

109 0.0214 20.27

1010 0.0177 30.22

10 0.226 107 0.0138 9.10

108 0.0093 14.06

109 0.0064 22.02

1010 0.0048 31.58

10 0.452 107 0.0345 7.82

108 0.0233 12.53

109 0.0164 20.11

1010 0.0126 30.11
tion case, when radiation effects are considered. This phenomenon
is referred to as the convective drop (for instance, Balaji and
Venkateshan [10]). This can be seen clearly in Fig. 7, which shows
the variation of the average Nusselt numbers on the inner boundary
for pure convection case ðNupnc;av;ibÞand for convection with the radi-
ation effects ðNuc;av;ibÞ for j ¼ 0:226 and 0.452 and k�s ¼ 10. Fig. 7
shows that surface radiation leads to a drop in the convective
component by 9–15% as compared to the pure convection ð� ¼ 0:0Þ
case. This is due to the fact that radiation equilibrates the tempera-
ture in the fluid region. Since the convective Nusselt number drops,
the rest of the contribution to the total Nusselt number comes from
surface radiation. It is found that radiative Nusselt numbers are
about 60–70% of the total Nusselt numbers. As expected, Nuc;av;ib

for j ¼ 0:226 is found to be higher as compared to j ¼ 0:452 due
to less space available for the convective movement. It is also
observed that Nuc;av;ib does not vary much with k�s beyond 10.
r � ¼ 0:6; k�s ¼ 5 and 10.

T�max Nuc;av;ib Nur;av;ib Nut

0.0107 8.28 12.12 20.4

0.00769 12.66 28.39 41.05

0.00625 18.24 32.09 50.33

0.00542 28.58 34.42 63.0

0.0195 5.67 18.54 24.21

0.0217 11.14 28.51 39.65

0.0125 16.58 31.31 47.89

0.0096 26.32 33.44 59.76

0.0070 7.55 12.13 19.68

0.0041 10.93 28.35 39.58

0.0035 18.03 32.00 50.47

0.0031 28.16 34.32 62.48

0.0144 5.64 18.55 24.19

0.0111 9.26 28.49 37.75

0.0099 15.96 30.44 46.4

0.0088 26.21 33.44 59.65



Table 4
Comparison of the dimensional temperatures for j ¼ 0:452; k�s ¼ 5 from � = 0.0–0.8
for Tref ¼ 300 K.

� Gr _Qv ðW m�3Þ DT ð�CÞ T�max Tmax ð�CÞ

0.0 109 719.0 1069.1 0.0214 67.33

5� 109 3595.0 5220.3 0.0194 156.85

1010 7190 10691.0 0.0177 251.58

0.4 109 719.0 1069.1 0.0147 50.73

5� 109 3595.0 5345.3 0.0123 100.94

1010 7190 10691.0 0.0114 157.41

0.6 109 719.0 1069.1 0.0125 48.27

5� 109 3595.0 5345.3 0.0104 90.81

1010 7190 10691.0 0.0096 138.74

0.8 109 719.0 1069.1 0.0108 43.98

5� 109 3595.0 5345.3 0.0091 83.42

1010 7190 10691.0 0.0084 124.85
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Fig. 7. Variation of the average Nusselt numbers with Grashof number for pure
convection ð� ¼ 0:0Þ and convection with radiation effect ð� ¼ 0:6Þ for k�s ¼ 10 and
for j ¼ 0:226 and 0.452.
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4.4. Variation of dimensionless maximum temperature with Grashof
number

Fig. 8 shows the variation of dimensionless maximum temper-
ature in the solid in case of pure convection ð� ¼ 0:0Þ and with the
radiation effects ð� ¼ 0:6Þ, for j ¼ 0:226 and 0.452 for k�s ¼ 10. It
can be observed that T�pnc;max values are higher than those of T�max,
which take into account the radiation effects. This confirms the fact
that increase in the radiation Nusselt numbers lowers the maxi-
mum temperatures in the solid. Secondly, since the convection is
less at higher radius ratio, T�max is higher for j ¼ 0:452 compared
to the case of j ¼ 0:226.

4.5. Effect of the surface emissivity

To study the effect of the emissivity of the surfaces on the heat
transfer characteristics, results are computed for four emissivities
between 0.2 and 0.8, for k�s ¼ 10 and j ¼ 0:226. Fig. 9 shows the
variation of the average convection Nusselt numbers on the inner
boundary with Grashof number for � ¼ 0:0 (pure convection case)
to � ¼ 0:8. It can be clearly seen that the convective drop increases
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Fig. 9. Variation of the average convection Nusselt numbers with Grashof number
for � = 0.2–0.8 for k�s ¼ 10 and j ¼ 0:226.

10
7

10
8

10
9

10
105

10

15

20

25

30

35

40

45

50

55

Gr

N
u

r,
av

,ib

(ε = 0.2)
(ε = 0.4)
(ε = 0.6)
(ε = 0.8)

λ*
s
 = 10 

κ = 0.226 

Fig. 10. Variation of the average radiation Nusselt numbers with Grashof number
for � = 0.2–0.8 for k�s ¼ 10 and j ¼ 0:226.



10
7

10
8

10
9

10
102

4

6

8

10

12

14 x 10
−3

Gr

T
 m

ax
*

(ε = 0.0)
(ε = 0.2)
(ε = 0.4)
(ε = 0.6)
(ε = 0.8)

λ*
S
 = 10 

A = 0.226 

Fig. 11. Variation of the dimensionless maximum temperature with Grashof
number for � = 0.0–0.8 for k�s ¼ 10 and j ¼ 0:226. 0 0.002 0.004 0.006 0.008 0.01 0.012

0

0.002

0.004

0.006

0.008

0.01

0.012

T
max
* (correlated data)

T
m

ax
*

(c
al

cu
la

te
d

 d
at

a)

100 data points 

Fig. 12. Parity plot to compare T�max (correlated) and T�max (calculated) for j ¼ 0:226.

0.035

0.04

0.045

)

100 data points 

5768 A. Shaija, G.S.V.L. Narasimham / International Journal of Heat and Mass Transfer 52 (2009) 5759–5769
with the emissivity of the surfaces. Fig. 10 shows the variation of
the average radiation Nusselt number on the inner boundary with
Grashof number for � ¼ 0:2; 0:4; 0:6 and 0.8. It is observed that
the radiation Nusselt number increases with the emissivity as ex-
pected. Fig. 11 shows the variation of the dimensionless maximum
temperatures with Gr for � ¼ 0:0 (pure convection case) to � ¼ 0:8.
It is evident from the figure that the dimensionless maximum tem-
peratures are significantly high for the pure convection case com-
pared to the combined transfer case, since the increased radiation
Nusselt numbers reduces the temperatures in the solid cylinder.
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Fig. 13. Parity plot to compare T�max (correlated) and T�max (calculated) for j ¼ 0:452.
5. Correlations for the combined heat transfer case

The correlations for the dimensionless maximum temperature
ðT�maxÞ, average solid cylinder temperature ðT�av;sÞ, average convec-
tive Nusselt number on the inner boundary ðNuc;av;ibÞ and the aver-
age radiative Nusselt number on the inner boundary ðNur;av;ibÞ from
the computed data are given in Table 5 for radius ratios of
j ¼ 0:226 and 0.452. In correlating the effect of emissivity, the
functional form ð1þ �Þ or ð1þ �aÞ (where a is a suitable exponent)
is used to obtain the best possible correlation. It may be noted that
this quantity becomes unity as � tends to unity (pure natural con-
vection). The table gives information about the radius ratio ðjÞ, the
functional form, mean square error ðemsÞ and the correlation coef-
ficient ðCcÞ as defined in the nomenclature. Sample parity plots for
T�max are shown in Figs. 12 and 13 for radius ratios 0.226 and 0.452,
respectively.
Table 5
Correlations for T�max; T�av;s; Nuc;av;ib and Nur;av;ib for conjugate natural convection with
surface radiation ðPr ¼ 0:7Þ.

j Correlation ems Cc

0.226 T�max ¼ 0:1584Gr�0:1291k��0:1689
s ð1þ �0:8277Þ�1:2877 0.020 0.9689

T�av;s ¼ 0:1550Gr�0:1424k��0:0968
s ð1þ �0:8448Þ�1:4483 0.0165 0.9678

Nuc;av;ib ¼ 0:4093Gr0:1916k��0:0047
s ð1þ �Þ�0:3840 0.0012 0.9977

Nur;av;ib ¼ 1:2� 10�4Gr0:1108k��0:0289
s ð1þ �0:15Þ15:488 0.0592 0.9982

0.452 T�max ¼ 0:3682Gr�0:1089k��0:2709
s ð1þ �0:84Þ�1:3854 0.0280 0.9625

T�av;s ¼ 0:3272Gr�0:1244k��0:1746
s ð1þ �0:8783Þ�1:5496 0.0216 0.9603

Nuc;av;ib ¼ 0:2378Gr0:2154k��0:0098
s ð1þ �0:80Þ�0:4947 0.0016 0.9975

Nur;av;ib ¼ 3:31� 10�4Gr0:0586k��0:0004
s ð1þ �Þ15:9234 0.0064 0.9956
6. Conclusions

The following conclusions are reached in the present study.

	 In general, the flow and the thermal fields are symmetric about
the vertical centerline.

	 A refraction of isotherms occurs at the solid–fluid interface and
the degree of refraction is found to be higher for higher thermal
conductivity ratios.

	 The temperature gradients in the solid reduce with an increase
in the thermal conductivity ratio, leading to increased homoge-
nization of temperature in the solid.

	 The flow in the annulus is always bicellular in the annular space.
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	 Radiation not only reduces the magnitudes of the vertical veloc-
ities but also modifies the velocity profiles in the core of the
annulus.

	 The stagnant region at the bottom of the annulus is found to
increase with Grashof number.

	 The degree of refraction of the isotherms at the solid–fluid inter-
face is lower when radiation is considered due to the homogeni-
zation of the fluid temperature.

	 The dimensionless maximum temperature, obtained by solving
the conjugate problem is much lowered with the effect of
radiation as compared to the pure convection case, which
strengthen the fact that radiation has a significant effect on the
solid temperature distribution even at low surface emissivity.

	 The surface radiation dampens the convection in the annulus due
to the tendency of temperature equilibration in the fluid region. At
an emissivity value of 0.6 for instance, the radiative Nusselt num-
bers are about 50–60% of the total Nusselt numbers depending on
the radiative parameters. This factor emphasizes the need for the
coupling of radiation and natural convection for the accurate pre-
diction of the flow and heat transfer characteristics.
References

[1] T.H. Kuehn, R.J. Goldstein, An experimental and theoretical study of natural
convection in the annulus between horizontal concentric cylinders, J. Fluid
Mech. 100 (4) (1976) 695–719.

[2] T.H. Kuehn, R.J. Goldstein, An experimental study of natural convection heat
transfer in concentric and eccentric horizontal cylindrical annuli, Trans. ASME
J. Heat Transfer 100 (1978) 638–640.

[3] T.H. Kuehn, R.J. Goldstein, A parametric study of Prandtl number and diameter
ratio effects on natural convection heat transfer in horizontal cylindrical
annuli, Trans. ASME J. Heat Transfer 102 (1980) 768–770.

[4] T.H. Kuehn, R.J. Goldstein, Correlating equations for natural convection heat
transfer between horizontal circular cylinders, Int. J. Heat Mass Transfer 19
(1976) 1127–1134.

[5] U. Grigull, W. Hauf, Natural convection in horizontal cylindrical annuli, in:
Proceedings of the Third International Heat Transfer Conference, vol. 2, 1966,
pp. 154–158.

[6] Z. Rotem, Conjugate free convection from horizontal conducting cylinders, Int.
J. Heat Mass Transfer 15 (1972) 1679–1693.

[7] V.I. Bubnovich, P.M. Kolesnikov, Conjugate transient heat transfer in laminar
natural convection in a horizontal cylindrical annulus, J. Eng. Phys. 19 (1986)
1175–1181.

[8] P.M. Kolesnikov, V.I. Bubnovich, Non-stationary conjugate free-convective heat
transfer in horizontal cylindrical coaxial channels, Int. J. Heat Mass Transfer 31
(6) (1988) 1149–1156.
[9] M. Lacroix, A. Joyeux, Coupling of wall conduction with natural convection
from heated cylinders in a rectangular enclosure, Int. Commun. Heat Mass
Transfer 23 (1) (1996) 143–151.

[10] C. Balaji, S.P. Venkateshan, Interaction of surface radiation with free
convection in a square cavity, Int. J. Heat Fluid Flow 14 (3) (1993) 260–
267.

[11] C. Balaji, S.P. Venkateshan, Combined conduction, convection and radiation in
a slot, cavity, Int. J. Heat Fluid Flow 14 (1995) 260–267.

[12] N. Ramesh, W. Merzkirch, Combined convection and radiation heat transfer in
side-vented open cavities, Int. J. Heat Fluid Flow 22 (2001) 180–187.

[13] S.N. Singh, S.P. Venkateshan, Numerical study of natural convection with
surface radiation in side-vented open cavities, Int. J. Therm. Sci. 43 (2004)
865–876.

[14] K.S. Anil, K. Velusamy, C. Balaji, S.P. Venkateshan, Conjugate turbulent natural
convection with surface radiation in air filled rectangular enclosures, Int. J.
Heat Mass Transfer 50 (2007) 625–639.

[15] M. Perlmutter, J.R. Howell, Radiant transfer through a gray gas between
concentric cylinders using Monte Carlo, Trans. ASME J. Heat Transfer 39 (1963)
169–179.

[16] S.O. Onyegegbu, Heat transfer inside a horizontal cylindrical annulus in the
presence of thermal radiation and buoyancy, Int. J. Heat Mass Transfer 29 (5)
(1986) 659–671.

[17] R.D. Manteufel, N.E. Todreas, Analytic formulae for the effective conductivity
of a square or hexagonal array of parallel tubes, Int. J. Heat Mass Transfer 31
(4) (1994) 647–657.

[18] H.C. Hottel, Radiant-heat transmission, in: W.H. McAdams (Ed.), Heat
Transmission, third ed., McGraw-Hill, New York, 1954 (Chapter 4).

[19] H.C. Hottel, A.F. Sarofim, Radiative Heat Transfer, McGraw-Hill, New York,
1967.
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